
Magic Move-Bitboard Generation in Computer Chess

Pradyumna Kannan

April 30, 2007

Abstract

This casual paper is written to provide programmers of chess engines a discussion of one of the
fastest and most versatile move-bitboard generators for individual sliding pieces. It is assumed that the
reader has prior knowledge of the fundamentals of bitboards and the C programming language.

Contents

1 Acknowledgements 2

2 Bitboard Representation and Orientation 2

3 The Magic Hashing Function 3
3.1 Introduction . 3
3.2 The Magic Bitscan . 3
3.3 Source Code for Move-Bitboard Generation . 6

3.3.1 Platform-Dependant Optimizations . 6

4 Generation of Optimal Magics 7
4.1 Step One - Assume variable bits in the magic b . 8
4.2 Step Two - Compute index mappings in terms of the variable magic 8
4.3 Step Three - Trial and error . 9

4.3.1 Grouping indices . 10
4.3.2 Determining the order of guessing . 10
4.3.3 Collision detection . 10

A Optimal Magics for 64-Bit Magic Move-Bitboard Generation 11

Listings

1 Definition of a 64 bit number in C . 2
2 The 64-bit Magic Hashing Function . 3
3 64-bit Magic Bitscan . 4
4 8-bit Magic Bitscan . 5
5 Homogeneous Array Access Magic Move-Bitboard Generator 6
6 Reduced Array Access Magic Move-Bitboard Generator . 7
7 32-Bit Optimized 64-bit Magic Hashing Function . 7
8 Identification of Computable 64-bit Indices . 10

1

1 Acknowledgements

I would like to express my sincere gratitude to users of the Winboard Forum1 for their constant support,
guidance, and motivation. I am espically grateful to Lasse Hansen2 and Gerd Isenberg3 for providing
interesting ideas and valuable feedback. I take this opportunity to also thank Andrew Fan and Sune Fischer
for reviewing this paper.

2 Bitboard Representation and Orientation

In chess there are 64 squares on the board, therefore 64-bit numbers are required to be used as bitboards as
shown in listing 1.

Listing 1: Definition of a 64 bit number in C

/*The f o l l ow i n g d e f i n i t i o n o f an unsigned 64− b i t number t ha t w i l l be used
* throughout the r e s t o f t h i s paper assumes a C99 compi ler conformance .
*The curren t Microsof t , I n t e l , and GNU compi l e r s w i l l be a b l e to compi le
* t h i s code .
*/

typedef unsigned long long U64 ;

/*The f o l l ow i n g macro i s used to append the appropr ia t e s u f f i x to unsigned
*64− b i t cons tan t s .
*/

#define C64(x) x##ULL
#define U64FULL C64(0xFFFFFFFFFFFFFFFF)

For this text our bitboard representation has A1 being the least significant bit4, H8 being the most significant
bit5, and the squares in between represented by counting up through ranks. To show the representation
graphically, here is a chessboard as we see it from white’s side:

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
2POPOPOPO
1SNAQJBMR

a b c d e f g h

1http://www.vpittlik.org/wbforum/
2Inventer of multi-direction magic move-bitboard generation
3Inventer of seperated-direction magic move-bitboard generation
4For the rest of this text LSB will be used as an acronym for least significant bit.
5For the rest of this text MSB will be used as an acronym for most significant bit.

2

Here are the respective indices for each bit in the bitboard for the above chessboard6.

56 57 58 59 60 61 62 63
48 49 50 51 52 53 54 55
40 41 42 43 44 45 46 47
32 33 34 35 36 37 38 39
24 25 26 27 28 29 30 31
16 17 18 19 20 21 22 23
8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7

In binary the same chessboard can be represented like this7:

H8G8F8E8D8C8B8A8H7G7F7E7D7C7B7A7 . . .H2G2F2E2D2C2B2A2H1G1F1E1D1C1B1A1

Although this definition of the bitboard will be used throughout the rest of the text, any particular
orientation and geometry of the bitboard may be hashed for move-bitboard generation by magic hashing
techniques.

3 The Magic Hashing Function

3.1 Introduction

Initially, the magic hashing function is best seen in an abstract manner. If one has a sparsely populated key
a and needs to hash it to an index in the database, then the hashing scheme in listing 2 can be used.

Listing 2: The 64-bit Magic Hashing Function

/*a − a s pa r s e l y popu la ted input key
*b − a magic cons tant used to hash the key a
* s − the number o f b i t s in the index
*/

index = (a*b)>>(64−s) ;
i n f o = database [index] ;

The bits in a will get shifted up by multiplication according to a pattern in the magic key b. The result8

will be shifted down to create an index. We will talk more about the mechanics of this hashing function
later and will now move on to the magic bitscan as a concrete and simple example of the usage of this magic
hashing scheme.

3.2 The Magic Bitscan

A bitscan will get the distance of a single bit from either the MSB or the LSB. We will concentrate on an
LSB bitscan because there are some tricks to isolate the LSB. An implementation of a 64-bit LSB bitscan is
shown in listing 3. This idea of a magic bitscan was apparently first introduced in July 1998 by Charles E.
Lieserson, Harald Prokop, and Keith H. Randall from the MIT Laboratory for Computer Science9.

Right now the code and the magic key in listing 3 might seem all random and working by ”magic”, but
after we run through an example of an 8-bit bitscan, understanding and writing this 64-bit bitscan will be
easier. Let us first begin by simplifying the multiplication a little. We can note that if we have only a single

6Bitboards from now on will be represented as matrices like the one shown on this page.
7Note that the LSB is to the right and the MSB is to the left and that each square represents a 0 or a 1
8from now on the product will be referred to as an index mapping
9http://supertech.csail.mit.edu/papers/debruijn.pdf

3

Listing 3: 64-bit Magic Bitscan

#define BITSCAN MAGIC C64(0x07EDD5E59A4E28C2)
/*X&−X g i v e s the l e a s t s i g n i f i c a n t b i t because o f two ’ s complement encoding
*X&(˜X+1) i s e q u i v a l e n t to X&−X
*The b i t i s then run through the magic hashing scheme to index a database
*/

#define FirstOne (X) BitScanDatabase [(((X)&−(X))*BITSCAN MAGIC)>>58]
int BitScanDatabase [6 4] ;
/*The i n i t i a l i z a t i o n func t i on runs a l l p o s s i b l e inpu t s through the
* hashing scheme and p l a c e s the co r r e c t data in the database .
*/

void i n i t i a l i z e F i s tOn e ()
{

U64 b i t =1;
int i =0;
do
{

BitScanDatabase [(b i t *BITSCAN MAGIC)>>58]= i ;
i++;
bit <<=1;

}while (b i t) ;
}

isolated bit then it is a power of 2. We can also note that b∗2n is equivalent to b << n. Here are examples10

to make it clear that b ∗ 2n is equivalent to b << n:

010110 ∗ 10 = 101100 = 010110 << 1

001101 ∗ 100 = 110100 = 001101 << 2

It can be seen that the multiplication left-shifts the magic b by an amount depending on the input key.
The next step is to note that the right-shift in the magic hashing function will make the upper bits of the
product the index. We will now present a graphical display of the newly introduced concepts.

magic = abcdefgh (each letter corresponds to a bit)

The indices are computed by running all possible inputs through the magic hashing function. Note that for
this 8-bit bitscan our index will be 3-bits wide because there will be 8 = 23 elements in our database.

When applying the magic hashing scheme (key*magic)>>5
for key = 00000001 the index will become abc
for key = 00000010 the index will become bcd
for key = 00000100 the index will become cde
for key = 00001000 the index will become def
for key = 00010000 the index will become efg
for key = 00100000 the index will become fgh
for key = 01000000 the index will become gh0
for key = 10000000 the index will become h00

10The numbers except the shifts are in binary

4

To generate the magic, we have to make sure that the index will be unique for every input key. A trial-
error approach works well to generate the magic. First try zeros in our magic then try ones if any indices
repeat. In the following trial-error run, indices are shown graphically as parts of the magic.

|abcdefgh|
1| 0|00 //Putting in a zero for h
2| 00|0 //Putting in a zero for g - collision with 1
3| 10|0 //Putting in a one for g
4| 010| //Putting in a zero for f
5| 001 | //Putting in a zero for e - all future variations collide
6| 000 | //Putting in a zero for d - collision with 1
7| 100 | //Putting in a one for d - collision with 3
8| 101 | //Putting in a one for e
9| 010 | //Putting in a zero for d - collision with 4
10| 110 | //Putting in a one for d
11| 011 | //Putting in a zero for c - all future variations collide
12| 001 | //Putting in a zero for b - all future variations collide
13|000 | //Putting in a zero for a - collision with 1
14|100 | //Putting in a one for a - collision with 3
15| 101 | //Putting in a one for b - collision with 8
16| 111 | //Putting in a one for c
17| 011 | //Putting in a zero for b
18|001 | //Putting in a zero for a

All the unique indices can be put together to make our magic.

1| 0|00
3| 10|0
4| 010|
8| 101 |
10| 110 |
16| 111 |
17| 011 |
18|001 |
|00111010| = 0x3A

The magic can now be used in an 8-bit bitscan as shown in listing 4.

Listing 4: 8-bit Magic Bitscan

#define BITSCAN MAGIC 0x3A
#define FirstOne (X) BitScanDatabase [(((X)&−(X))*BITSCAN MAGIC)>>5]
char BitScanDatabase [8] ;
void i n i t i a l i z e F i s tOn e ()
{

unsigned char b i t =1;
char i =0;
do
{

BitScanDatabase [(b i t *BITSCAN MAGIC)>>5]= i ;
i++;
bit <<=1;

}while (b i t) ;
}

5

Although it would be rather tedious by hand11, the same technique of generation used to generate magics
for the 8-bit bitscan can be applied to the 64-bit bitscan. Hopefully this section on the magic bitscan gave a
solid foundation for the use of the magic hashing function. The magic bitscan is also referenced when magic
generation techniques for move-bitboard generation are discussed.

3.3 Source Code for Move-Bitboard Generation

Here C source code is developed for magic move-bitboard generation but we will leave a discussion of
generating magics for a later section. To generate the move-bitboard for a particular piece we will require
the relevant occupancy information from the occupancy bitboard12. When isolating the relevant occupancy
bits we can make the simplification that the occupancy at the board edges do not affect the moves of a
sliding piece. For example, for a slider on D4 we will only need to consider the following occupancy bits13

in our key for the magic hashing function:

BishopMask[D4] =

· · · · · · · ·
· · · · · · X ·
· X · · · X · ·
· · X · X · · ·
· · · · · · · ·
· · X · X · · ·
· X · · · X · ·
· · · · · · · ·

;RookMask[D4] =

· · · · · · · ·
· · · X · · · ·
· · · X · · · ·
· · · X · · · ·
· X X · X X X ·
· · · X · · · ·
· · · X · · · ·
· · · · · · · ·

To isolate the relevant occupancy bits, we will & the mask of the relevant bits with the occupancy

bitboard. The next step is to run the relevant occupancy bits through the magic hashing scheme to index a
move-bitboard database. The generic procedure for both rooks and bishops is shown in listing 5.

Listing 5: Homogeneous Array Access Magic Move-Bitboard Generator

/* I n i t i a l i z e the move database in the same manner t ha t we i n i t i a l i z e d the
*magic b i t s c an . Run through a l l p o s s i b l e inpu t s and use the pre−computed
*magic to f i nd the index . Compute the move−b i t b oa rd by any conven t iona l
*method and p lace i t a t the indexed l o c a t i o n in the move database .
*/

U64 moveDB[64][1<< s] ; // s i s the number o f b i t s in the index and depends
//on the q u a l i t y o f the magics be ing used

//This mask i s used to ge t the r e l e v an t occupancy b i t s
U64 mask [6 4] ;
U64 magics [6 4] ;

i n l i n e U64 move(const unsigned int square , const U64 occupancy)
{

return moveDB[square] [((occupancy&mask [square]) * magic [square])>>(64− s)] ;
}

3.3.1 Platform-Dependant Optimizations

It is possible to make memory optimizations by noting that different squares on the board have a different
number of bits in the index. We can then reduce the size of the database as shown in listing 6. This can

11That’s why we have computers!
12An occupancy bitboard has active bits on squares where pieces are placed and has inactive bits everywhere else
13X signifies the active bits

6

sometimes improve speed on platforms that suffer cache problems from the larger homogeneous access array
databases.

Listing 6: Reduced Array Access Magic Move-Bitboard Generator

U64 moveDB[DB SIZE] ;
//DBindex po in t s to the beg inn ing o f moves f o r a square in moveDB
U64* DBindex [6 4] ;
/*Since the b i t s in the i n d i c e s are d i f f e r e n t f o r each square
*we w i l l r e qu i r e d i f f e r e n t s h i f t s f o r each square in the magic
* hashing func t i on .
*/

U64 s h i f t [6 4] ;
U64 mask [6 4] ;
U64 magics [6 4] ;

i n l i n e U64 move(const unsigned int square , const U64 occupancy)
{

return *(
DBindex [square]+
(((occupancy&mask [square]) * magic [square])>> s h i f t [square])
) ;

}

Optimizations for 32-bit platforms can be made by splitting up the 64-bit multiplication into two 32-bit
multiplications and a combination as shown in listing 7.

Listing 7: 32-Bit Optimized 64-bit Magic Hashing Function

/*Al l 64− b i t v a l u e s are cons idered unions o f type U64 and a s t r u c t u r e
* o f two 32− b i t unsigned in t e g e r s−−h i and l o . Note t ha t the magic
*used f o r the 32− b i t op t imized 64− b i t magic hashing func t i on w i l l be
* d i f f e r e n t from the magic used f o r the o r i g i n a l 64− b i t hashing func t i on .
*a − a s pa r s e l y popu la ted key
*b − the magic used to hash the key a
* s − the number o f b i t s in the index
*/

index = (a . u32 . h i *b . u32 . h i + a . u32 . l o *b . u32 . l o)>>(32−s) ;
i n f o = database [index] ;

If available memory becomes a problem14 one can split up the move-bitboard generation by only gener-
ating a part of the move bitboard at a time. This can be done by generating the move-bitboard for each
direction of movement separately.

4 Generation of Optimal Magics

This section will introduce a generalized approach for generating optimal magics15. It is highly recommended
that the previously developed method of generating magics for the magic bitscan is well understood.16.

14like for cheap hand-held platforms
15An optimal magic is one that requires the smallest possible number of bits in the index
16One can apply this generalized magic generation technique to the bitscan to help visualize how it works

7

4.1 Step One - Assume variable bits in the magic b

In this paper bi will represent a bit i bits away from b’s LSB. Here are some graphical representations of the
variable magic b:

b56 b57 b58 b59 b60 b61 b62 b63

b48 b49 b50 b51 b52 b53 b54 b55

b40 b41 b42 b43 b44 b45 b46 b47

b32 b33 b34 b35 b36 b37 b38 b39

b24 b25 b26 b27 b28 b29 b30 b31

b16 b17 b18 b19 b20 b21 b22 b23

b8 b9 b10 b11 b12 b13 b14 b15

b0 b1 b2 b3 b4 b5 b6 b7

b63b62b61b60b59b58b57b56b55b54b53b52b51b50b49b48 . . . b15b14b13b12b11b10b9b8b7b6b5b4b3b2b1b0

4.2 Step Two - Compute index mappings in terms of the variable magic

Multiply all possible inputs by the variable magic to compute all the index mappings17 for each input. Let
us go through an example of computing an index mapping for a particular input of a rook on D4.

Key = a =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

IndexMapping = Key ∗ Magic = a ∗ b

=

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

∗

b56 b57 b58 b59 b60 b61 b62 b63

b48 b49 b50 b51 b52 b53 b54 b55

b40 b41 b42 b43 b44 b45 b46 b47

b32 b33 b34 b35 b36 b37 b38 b39

b24 b25 b26 b27 b28 b29 b30 b31

b16 b17 b18 b19 b20 b21 b22 b23

b8 b9 b10 b11 b12 b13 b14 b15

b0 b1 b2 b3 b4 b5 b6 b7

We will now simplify the multiply as we did for the magic bitscan. From ring theory18 we can identify that

the distributive, associative, and commutative properties apply to multiplication with overflow and addition
with overflow. We can then split up the key into powers of two and apply the identity that b ∗ 2n = b << n.

a =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

= 211 + 225 + 230

17Recall that an index mapping was defined as the product of the key multiplied by the magic
18http://mathworld.wolfram.com/Ring.html

8

IndexMapping = a ∗ b

= b ∗ a

= b ∗ (211 + 225 + 230)

= b ∗ 211 + b ∗ 225 + b ∗ 230

= b << 11 + b << 25 + b << 30

To generalize this, if we have a key

a =
n∑

i=0

2pi ,

where pi is an integer and 0 ≤ pi < pi+1 < 64, then

IndexMapping = b ∗ a =
n∑

i=0

b << pi.

Likewise, for the 32-bit optimized 64-bit hashing function

IndexMapping = b1 ∗ a1 + b2 ∗ a2 =
n1∑
i=0

b1 << p1
i +

n2∑
i=0

b2 << p2
i .

Back to our example,

IndexMapping = b << 11 + b << 25 + b << 30

=

b45 b46 b47 b48 b49 b50 b51 b52

b37 b38 b39 b40 b41 b42 b43 b44

b29 b30 b31 b32 b33 b34 b35 b36

b21 b22 b23 b24 b25 b26 b27 b28

b13 b14 b15 b16 b17 b18 b19 b20

b5 b6 b7 b8 b9 b10 b11 b12

0 0 0 b0 b1 b2 b3 b4

0 0 0 0 0 0 0 0

+

b31 b32 b33 b34 b35 b36 b37 b38

b23 b24 b25 b26 b27 b28 b29 b30

b15 b16 b17 b18 b19 b20 b21 b22

b7 b8 b9 b10 b11 b12 b13 b14

0 b0 b1 b2 b3 b4 b5 b6

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

+

b26 b27 b28 b29 b30 b31 b32 b33

b18 b19 b20 b21 b22 b23 b24 b25

b10 b11 b12 b13 b14 b15 b16 b17

b2 b3 b4 b5 b6 b7 b8 b9

0 0 0 0 0 0 b0 b1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Note that the index cannot be computed immediately as we did for the magic-bitscan because there are

carry effects on the index from addition. Instead, we will have to wait for the trial-error step to be able to
compute the indices for some of the inputs. If IndexMapping = b << p0 then the index can be computed
immediately as was done for the magic bitscan. Note that IndexMappings don’t have to be pre-computed
and can be computed on the fly.

4.3 Step Three - Trial and error

Although there are some additional complications, we will use the same trial-error technique used for the
magic bitscan. In other words we will guess bits in the magic while checking for unwanted collisions.

9

4.3.1 Grouping indices

Unlike the magic bitscan, multiple inputs can hash to the same index for move-bitboard generation. Identify
which inputs and indices can map to the same index and organize them into collision groups.

4.3.2 Determining the order of guessing

For the magic bitscan we guessed the LSB first then guessed up to the MSB. If we went the other way19,
then the search tree would be much larger. Therefore picking the correct guessing order of bi is essential.
We can use a simple non-optimal ordering scheme for move-bitboard generation. bi that occur in the index
of hashed keys that are powers of two should be ordered first. Then, bi related with the higheset sharing of
bi across index mappings should be ordered next20. Order bi from LSB to MSB for bi having direct influence
on the index bits and order bi from MSB to LSB for those having only carry influence on the index bits.

4.3.3 Collision detection

If we can compute the index for an input key, we can check if the index collides with any other computed
indices that are not in the same collision group. If the index of a particular index mapping cannot be
computed, we can assume it doesn’t collide with any other indices. Listing 8 presents a function that will
determine whether an index can be computed for the 64-bit magic hashing function.

Listing 8: Identification of Computable 64-bit Indices

typedef unsigned char bool ;
#define t rue 1
#define f a l s e 0

/*This func t i on makes sure t ha t t h e r e are no carry e f f e c t s on the index
* from the unknown magic b i t s . This i s done by s u b t r a c t i n g the l owe s t
* p o s s i b l e e f f e c t on the index (1<<(64−s)) by mappings t ha t can p o s s i b l y
* he lp cause a c o l l i s i o n .
*a − input key
*known − known a c t i v e b i t s in the v a r i a b l e magic
*unknown − here , unknown b i t s in the v a r i a b l e magic are a c t i v e
* s − number o f b i t s in the index
* re turns t rue i f the index can be computed by the known magic b i t s
*/

bool computable (const U64 a , const U64 known , U64 unknown , const int s)
{

U64 max = (C64(1)<<(64− s)) − (a*known & (U64FULL>>s)) ;
while (unknown)
{

U64 b i = (unknown&−unknown) ;
U64 map = a* b i ;
i f (map >= max) return f a l s e ;
max−=map ;
unknownˆ=b i ;

}
return t rue ;

}

The magic is computed when all bi are guessed without bad collisions.
19Start with a instead of h
20For rooks, the bi related with the horizontal occupancy information should be ordered first

10

A Optimal Magics for 64-Bit Magic Move-Bitboard Generation

The following tables will present a selection of optimal magics for the 64-bit magic hashing function. The
first column gives the square in question, the second column gives the magic, and the third column gives the
smallest number of bits in the index that the magic is valid for.

Rooks
Square Magic (Hexadecimal) Bits

A1 0x1234567890123456 10
A2 0x1234123546243543 9

Bishops
Square Magic (Hexadecimal) Bits

A1 0x1234567890123456 10
A2 0x1234123546243543 9

11

